Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

نویسندگان

  • B. Engel
  • H. Hassan
چکیده

Abstract—Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf =bending radius/ diameter of the tube), wall thickness (Wf = diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Rotary-draw Bending Process for Thin-walled Rectangular Aluminum Tube

The Rotary-Draw Bending (RDB) process is a distinguished process employed for the precision cold bending of a hollow tube with small radius bends using Numerical Control (NC) machines. This research presents an analytical model based on the power law hardening model for the RDB processing of rectangular thin tubes. Based on the constraints of the tube in the dies and its thinness, the plane str...

متن کامل

Experimental and Numerical Investigation on the Heat Treatment Effects of AA6063 Aluminum Alloy Tubes During Rotary Draw Bending

In this study, the effects of heat treatment of aluminum alloy on the tube bending process were investigated in the rotary draw bending process. As two experimental and numerical simulation methods were used to determine the wall-thinning, ovality, and spring back for extruded, annealed, and aged AA6063 aluminum alloy tubes in different bending angles and bend radii. Numerical simulations were ...

متن کامل

The Effect of Normal Anisotropy on Thin-Walled Tube Bending

Thin-walled tube bending has common applications in the automobile and aerospace industries. The rotary-draw-bending method is a complex physical process with multi-factor interactive effects and is one of the advanced tube forming processes with high efficiency, high forming precision, low consumption and good flexibility for bending angle changes. However, it may cause a wrinkling phenomenon,...

متن کامل

Analysis of pressure distribution and optimization of working conditions during push bending of circular tubes

Thin-walled tube bending is still to be considered a new and advanced technique. The process has been adopted into several industries such as aero and automotive. This process may produce a wrinkling, bulking and tearing phenomenon if the process parameters are inappropriate, especially for tubes with large diameter and thin wall thickness. Push bending process is one of the methods used for be...

متن کامل

Strain Hardening Analysis for M-P Interaction in Metallic Beam of T-Section

This paper derives kinematic admissible bending moment – axial force (M-P) interaction relations for mild steel by considering strain hardening idealisations. Two models for strain hardening – Linear and parabolic have been considered, the parabolic model being closer to the experiments. The interaction relations can predict strains, which is not possible in a rigid, perfectly plastic idealizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015